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In Kessler (Appl. Comput. Harmonic Anal. 9 (2000), 146-165), a construction was
given for a class of orthogonal compactly supported scaling vectors on R2, called
short scaling vectors, and their associated multiwavelets. The span of the translates of
the scaling functions along a triangular lattice includes continuous piecewise linear
functions on the lattice, although the scaling functions are fractal interpolation
functions and possibly nondifferentiable. In this paper, a similar construction will be
used to create biorthogonal scaling vectors and their associated multiwavelets. The
additional freedom will allow for one of the dual spaces to consist entirely of the
continuous piecewise linear functions on a uniform subdivision of the original
triangular lattice. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Much research has been done in the construction of orthogonal
multiresolution analyses of L?*(R) (see [5,10,11]) and the associated
multiwavelets (see [5,8,18]). All of the multiwavelet constructions have
involved the completion of a matrix satisfying certain conditions. A class of
nonseparable, orthogonal dilation-3 scaling functions defined on uniform
triangulations of R? were constructed in [6,9]. (See [2,13] for nonrelated
constructions on R2.) Multiwavelets for this specific example were found in
[7]. In [15], the author generalized the construction of the orthogonal scaling
vectors and provided a construction of the associated multiwavelets. This
paper generalizes those results to construct a class of biorthogonal scaling
vectors and the associated multiwavelets. The construction of the multi-
wavelets is analogous to the construction of multiwavelets for short scaling
vectors introduced in [15].

1.1. Orthogonal Scaling Vectors and Multiwavelets

Let ¢ and & be linearly independent vectors in R? and let ¢y = (0, 0). For
each x € R?, there exist constants @ and b such that x = ag; + bey. Then
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define the metric |x|, by

| = la + b| if both a,b have the same sign,
® ] max{lal, ||} otherwise.

Let 7 be the 3-directional mesh with directions &, &, and & — ¢. Define
Ag € 7 to be the triangular region with vertices ¢y, &, and &, and Vo e I
to be the triangular region with vertices ¢;, &, and & + &. Define the
translation function ¢ ;(x) =x —i¢e; —jeo and the dilation function
d; j(x) = Nx — ie; — jeo for some fixed integer dilation N > 1. Define the
affine reflection function r: Vy — 4, that maps the vertices ¢|, &, and ¢ +
& to vertices &, &, and ¢, respectively. The notation f = foris used for
any f supported in 4.

DEFINITION. A multiresolution analysis (MRA) of L2(R?) of multiplicity
r is a set of closed linear subspaces such that

.cVyc Vi iclWhaecWaclha... .

ﬂneZ V;1 - {O}

UneZ Vn = Lz(R2)'

. felVies f(NT")el, nel.

. There exists a set of functions {¢', ¢?,...,¢"} such that {¢* o1, 1 k =
l,...,r,i € Z*} forms a Riesz basis of Vj.

N

The r-vector @ == (¢', >, ..., ¢")" is referred to as a scaling vector and the
individual ¢ as scaling functions.

Conditions 1, 4, and 5 imply that a scaling vector & with compactly
supported ¢* satisfies the dilation equation

d(x) =N Z g;® < d; (1.1)

)
iel”

for a finite number of r X r scalar matrices g;.

DEFINITION. A vector & of r linearly independent functions on R is
refinable at dilation N if it satisfies (1.1) for some sequence of » x r scalar
matrices c;.

A simple example of a MRA of L2(R?) over the mesh .7 is constructed by
defining the “hat” function / by

h( ) 1 - |x|1; for |x|1;<1a (1 2)
X) = .
0 otherwise,
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and letting @ = {4}. Using the notation
S(H):=clospspan{fot;:ieZ* feH}, for H c L*(R%),
then define V) := S(@®). It is easily verified that the scaling vector is refinable
for any integer dilation N >1, and that (V,) is a MRA, where

V, = S(PWN?-)).
For function vectors I' and A with elements in L*(R?), define

I, A = /R ] I)AX)T dx.

DEFINITION.  If {D,Pot;;> = 09;00,;/, then we say that & is an
orthogonal scaling vector. If the ¢* are compactly supported, then the
multiresolution analysis generated by @ is said to be orthogonal.

Define W, to be the orthogonal complement of ¥, in V;|, so that

Vi1 =V, ® W, for ne Z.

The W, referred to as wavelet spaces, are necessarily pairwise orthogonal
and are spanned by the orthogonal dilations and translations of a set of

functions {y', lpz, ..., y"}, referred to as wavelets, that satisfy the equation
V) =N > hdod (1.3)
ieZ?

for some h;, where ¥ is the s-vector (Y', ¥, ..., y")T.

DEFINITION. A pair of n-dimensional function vectors @ and & are said
to be biorthogonal if

<d3, @ o tizi> = 50’1'5()’]'1, l,] eZ.

A necessary and sufficient condition for the construction of biorthogonal
vectors was given in [12], and will be stated here without proof.

LEmMA 1.1  Suppose U and W are m-dimensional subspaces of R". There
exist dual (biorthogonal) bases for U and W if and only if U n Wt = {0}.

If the criteria of Lemma 1.1 are met, then the Gram-Schmidt
orthogonalization process can be modified to extract biorthogonal sets
from bases for U and W.
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1.2. Short Scaling Vectors

Throughout the paper, Px denotes the orthogonal projection onto a
subspace K of L*(R?). If C is a compact set of R> and U is a space of
functions on R?, then define

U(C) = {f e U: supp(f) c C}.

DEFINITION.  Suppose @ = (¢',..., %) is refinable. If w = (w', ..., w")"
is such that @ = wh, ... w, !, .. ¢ is refinable, then w is said to
extend .

The construction of short scaling vectors is given in [15], and is a
generalization of a construction in [6]. Recall the nonorthogonal scaling
vector generated by the ‘“hat” function /4 defined in (1.2). Define #; =
h(x — &)y, i=0,1,2.

DEFINITION. Suppose there is a subspace #° of Co(R?) with an
orthogonal basis {w!,...,w'} such that

1. B={w',...,w,w!,...,W) extends {h},
2. supp(w)c do, i=1,...,¢,
3. (I — R/ﬁ‘)hi 1 ([ — P«/p')hj, l#], i,j € {O, 1,2}

Then
Q= {w, . wwh W (I~ Peg)h)”

is called a short scaling vector, and generates a MRA (V,) of multiplicity
q =2t + 1 such that ¥} still includes continuous piecewise linear functions
on 7.

A dilation-3 example with #" = {w} is given in [15] and is illustrated in
Fig. 1. The scaling functions are fractal interpolation surfaces that are
nondifferentiable and have a nonintegral box dimension greater than
2. (A full introduction to fractal interpolation surfaces can be found in
[9,17])

2. MAIN RESULTS

Suppose that X and Y are spaces spanned by biorthogonal function
vectors. Then define the projection operator P} such that ker P} = Y+
and range PY = X. If ¥ =S(X) and % = S(Y) are finite shift invariant
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FIG. 1. Approximations to scaling functions from a dilation-3 short scaling vector.

spaces, then

% foy'o ot
Frl = ZZ & y> b

jer? i=

where x; € X and y;, e Y.
Define h, hy, hy, and hy as in Section 1.2. Then we have the following
result.

THEOREM 2.1.  Suppose there are function vectors B := {w',...,w'} and
B= (', ..., W'} in Co(R?) such that

1. B and B are biorthogonal,

2. 4wk, o wh W) and {Wl,...,W’,ﬁil,...,va/t} each extend {h},

3. supp(w'), supp(W') < Ao, i =1,...,t, and

4. (I - PR L (I — PY Wy, i), z]e{O 1,2}, where # = S(B) and
W = S(B).

Then there exist biorthogonal scNaling vectors @ and ® of length q = 2t + 1
such that Vy .= S(®) and Wy = S(®) each contain continuous piecewise linear
functions on the mesh I
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_ Proof. The main issue is finding compactly supported functions ¢' and
¢’ that satisfy the biorthogonality conditions <{¢',¢/> = J;;. Define the
following:

'=w fori=1,...,1t d=w fori=1,...,t

= fori=1,...,t and rvi=w fori=1,...,1,

1 j we 1 ”
o= U =Pk @7 =g =Pk

where o, B are constants such that ocﬁ = (I = PV, (1 — PL. 7 k). Let
= (¢', . ,¢0DT and @ = ($',...,¢9)". Then set V —S(tD(NP )) and
V,, — S(B(NP-)).
Condition (1) guarantees that
<¢iaq§j>:5i,j fori,j=1,...,t and
(P> =06y forij=rt+1,..20

Condition (3) guarantees that

(P, ¢>=0 fori=1,...,t, j=t+1,...,2¢t and
(i, /> =0 fori=t+1,...,2t, j=1,...,¢

Condition (4) establishes the remaining orthogonality conditions:

(P, > =0 fori=1,...,2 and
(P, ¢7>=0 fori=1,...,2t.

Condition (2) guarantees that both @ and @ are refinable, and that V, <
V.1 and ¥, = V,y. The requirements that Nz V=0, Niez Vi =0,
Ujez ¥ = L*(R), and Ujez /. = L*(R), and that the translates of @ and &
form Reisz bases, are trivially met by compactly supported scaling vectors.

Therefore, both (V) and (17,,) are MRAs. 1

While the restrictions on the spaces B and B are extensive, such spaces do
exist. An example is provided in Section 3. It is important to note that, as
with the short scaling vectors, the scaling functions and associated
multiwavelets in these constructions may be nondifferentiable FIS.
However, by relaxing the need for orthogonality, it is possible to construct
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a ‘“‘smoother” basis that can be used in the reconstruction phase of
applications.

Section 4 will give a detailed definition of the wavelet spaces Wy, Wy,
Wy, Vf{,, W,, and Wj. Wy and I/T? will have generators supported on
triangles, W, and W,} will have generators supported on parallelograms, and
Wy, and W), will have generators supported on hexagons. The main theorem
on the construction of the g(N?> — 1) wavelets (see [14]) will be stated and
proven in that section.

3. A CONSTRUCTION OF BIORTHOGONAL SCALING VECTORS

Set vectors ¢; := (1,0) and &, = (1/2, \/§/2), so that 7 is a 3-directional
mesh of equilateral triangles. Let / be the generalized hat function defined in
(1.2) and fix N = 3. In order to construct a scaling vector @ that satisfies
Theorem 2.1, let w and u be continuous functions with (nonempty) support
in 4gp and let w:=wer and a:=uc-r. Let G = {(0,0),(1,0),(2,0),(0,1),
(1,1),(0,2)} and let G = {(0,0),(1,0),(0, 1)}. With condition 2 of Theorem
2.1 in mind, we require that w and u satisfy the following dilation equations
for some o, f3, s;, 84, qi, G-

w=ohodi + Y swodi+ Y Sved, (3.1)
ieG icG

w=Phodyy+ ) quedi+ Y Giiicd. (3.2)
ieG ieG

The functions w and u are FIS, with interpolation points located
uniformly over 4 as illustrated in Fig. 2, provided |s;| <1 and |g;| <1 for all
i € Z? (this is necessary if w and u are to be continuous).

In order to construct w, W, u, and @ with rotational symmetry about the
centroid of their support triangle, let

50,0 =820 = 802 = S, qoo = 420 = qo2 =41,
S1,0 =50,1 = S1,1 = 82 and q1,0 = 901 = 91,1 = 42,
So0 =810 = 30,1 = 83, do.0 = 41,0 = do,1 = q3,

where [s;], |gi] <1 for i =1,2,3. Then the only free parameters will be the
scaling variables s;, ¢;, and o and f, the values of the functions w and u at
the centroid of 4, respectively. Set o, § := 1 for this construction.

Recall that h; = h(- — &)l,,, where i=0,1,2. Due to the rotational
invariance of both w and the set of 4;’s, the six orthogonality conditions
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2 = 2 q2 a q2
q q

S S
S3 S3 3 3
S1 S2 S1 )1 q2 d1

FIG. 2. The domain points and scalings used in the example.

needed to satisfy condition 4 of Theorem 2.1 reduce to just
(I — PJhg L (I — PYhy, (3.3)

where #" = S(w) and # = S(u). Since

W, <ho, uy W <hy,w)
Pﬂho = <w,u> w and PWhl = <w,u> u,
then (3.3) reduces to
ho,u>lhy,w
Choy > :M_ (3.4)
w,uy

Since <hg,w) = {h;,wy =<h,wy and hy+h +h =1 on Ay, we
calculate <w, 1) using (3.1):

w1y =Chodi, 1)+ siwed, 1+ §ibed, 1)

ieG icG
_ Lhl1
3G-CLis)
Likewise, from (3.2)
h,1
1y = <h, 1)

33— Z?:l 6]:‘).
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Since <, 1> = {, lho,wy = 3<w 1>, and <{hj,u) = 3<u 1>, then
V3 wd e

18(3 — Zl 1 50) 183 —->"",9)
Again, using both (3.1) and (3.2),
<hyh) + 3(s2 + 53)<ho, w) + 3(q2 + Q3)<h0,u>

33 -1 siai)

Since {h,h) = #, then using (3.5),
wyuy

_ VBBG - S s)G — S 4) + 22 +53)3 — S 4) + 202 + 43 = XL )]
363 — 2oL s03 — Xk 4)( — X si0)

Cho, wy = (3.5)

wyuy =

(3.6)

Substituting (3.5), (3.6), and {hg,h;) = % into (3.4) and requiring that
(3.6) is nonzero provides the following necessary conditions on the s;’s and

qi’S:
27s1 + 92 4+ 9s3 + 27q1 + 992 + 993 — 255191 — 35192 — 35193 — 352q1
— 13s2q2 + 35293 — 35391 + 35392 — 13s3g3 — 33 =0, and 3.7

27 —9q1 — 3q2 — 3q3 — 9s1 + 3q151 + q251 + q351 — 352 + q152
— @252 — q352 — 353 + q153 — q253 — q353 #0. (3.8)

By letting s; := 0 for i = 1,2,3, w becomes piecewise linear and (3.7) and
(3.8) reduce to

39g) +3¢2+3g3—11)=0 and 309 -3¢ —q2—q3)#0. (3.9)

Furthermore, by letting g = ¢; for i = 1,2, 3, (3.9) reduces to 45¢ — 33 =0
and 27 — 15¢ #0, with the solution ¢ = 11/15.
Define the scaling functions

¢!
¢*

_ <hut, <hut>
¢ =h- ; <wu> Z <w,uy
Bt

<w,uy’
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FIG. 3. Scaling functions ¢' and ¢* with s; = 0.

v

2. U

é = oy

o - Showety o Koty
¢ .—a[h ;70‘”0 uot §7<w,u> u t,],

where H = {(0,0), (0, —1),(—1,0)} and H = {(0, —1),(—1,0),(—1,—1)}, and

Cho, w <ho, up
w,up '

Then @ = (¢',¢% > and & = (¢!, ¢% )" are biorthogonal scaling
vectors that generate the MRAs V), = S(®(3”(x, y))) and 14 p = = S(B(3L(x, y))).
Note that both ¥ and ¥, contain piecewise linears on the triangulation 7~
and with s; = 0 fori = 1,2,3, 7} is the set of piecewise linears on a uniform
subdivision of 7. This set of scaling functions and their biorthogonal
counterparts with ¢; = 11/15 for i = 1,2,3 are illustrated in Figs. 3 and 4.

Notice that for any nonsingular linear map 4, we may define the same set
of scaling functions on the lattice generated by Ae; and Aep, and the
functions will maintain their biorthogonality.

o= 6<<h0,h0> —

4. CONSTRUCTION OF ASSOCIATED MULTIWAVELETS

Let @ and @ be the scaling vectors constructed in Theorem 2.1 and let (V},)
and (V) be the corresponding MRAs. Recall that supp @', supp ¢’ < 4g =
A(eg, e1,62) € 7 fori=1,...,tand that supp ¢', supp qB’ c Vo = A(e1, 6, €1
4+e)e T fori=t+1,... ,2t. First consider wavelets supported in 4 € 7
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FIG. 4. Approximations to scaling functions qgl and q§3 with ¢; = 11/15.

Consider the (tN? + W)-dimensional spaces V;(4o) and ¥(4p), with
the bases consisting of ¢ dilated scaling functions on each of the N?
subtriangles and W dilated ¢? and (f)q .

Define the functions

gi =PI (@IC — &) and G = PR ($9( — 2) (4.1)
for i = 0, 1,2. Then define the subspaces X of V;(4o) and X of ¥(4,) by

X =span({g;:i=0,1,2y U{¢p':i=1,...,1}) and
X =span({§i:i=0,1,2} U{P' :i=1,...,1}).

Let B be a basis for the space (I — P§)Vi(4y) and let B be a basis for the
space (I — P;f)V{(AO). Note that the elements of B are orthogonal to ¥, and
the elements of B are orthogonal to ¥, by definition. Also notice that due to
their support, the elements of both B and B are orthogonal to their own
translates.

A small lemma is needed before we proceed.

LEMMA 4.1. B~ B+ = {0}.

Proof. Let W ={¢':i=1,....,t} and # ={¢':i=1,...,t} and
notice that, from the construction of the scaling functions, # and #  are
biorthogonal sets. Consider iy € B n B*. Then supp(y) < 4y and € P;fVl
(A4¢). Then  is a linear combination of elements in X orthogonal to X"
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Consider (,¢'>, i=1,...,¢ Since {§;:i=0,1,2} L #", } is a linear
combination of elements in “// But, by Lemma 1.1, # n#™* =0, so
=0 1

Then from Lemmas 4.1 and 1.1, there exist dual biorthogonal bases for B
and B, denoted 'PA and ‘I’A respectlvely Recall the notation f = for,
where r is the aﬂine transforma‘u@n from V, to 4y for f e L*(V). Define

{lﬁ YeP)} and VY = {lp weqﬂ‘} Define W, = S(¥4 U ¥)) =
Wo and W= S('I’ u Py ) < W,. The spaces W, and W, each have

2<¢N2+W—0+3)> =g(N>—1)—3N -3

generators.
Before proceeding, the following lemmas are needed.

LEMMA 4.2. For g; and §;, i =0,1,2, as defined in (4.1), {gi,d;> <0 for
i),

Proof. Define z; == ¢?(- —¢)l,, and Z; = (- — &)y, for i=0,1,2.
Recall that ¢? is the only scaling function with support larger that one
A € 7. Notice that the z; are still linear and nonnegative on all edges of 4.

Consider <gy, g1 ». Express both z; and Z; in terms of basis functions for
Ml,, and the g;:

| N .
20 = ¢? o dooly, ty Z (N = )¢ = do,il 4,
pa

1 N—1 .
+ N Z U Z)¢q ° di’()lﬁo + 90,
i=1

N-1 N-1

. ~ 1 .~ 1
2 = @7 odyoly, +N Z i¢? o digly, +N Z ld’q din—ils, + g1

i=1 i=1

Recall that ¢ is orthogonal to the translates of ¢¢, even when restricted to
bounded domains, so the same will be true for ¢?edyy and ¢7 e dpp.
Therefore, many of the terms of <{gg, g;» will vanish:

N—-1

. 1 , . = .
Cz0. 21y = 53 D N = <P < dipla,» 7 o diols, > + <g0.G1)-
i=1
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Since

(DT o dipl g @7 0 diolg,> =KL o dig, d7 o dig)

K ~ K
— 5 (8.8 =5
for some 0<K <1, then
K M-l
C20.21) =37 D iN = 1) +<g0.G1)-
=1

Using the identities

~ . n(n+1) N, nn+1D@2n+1)
; i= 5 and ; ir= 6 ,
then
N K(N? -1 .
{20,21) = % + <90, g1 - 4.2)
Therefore, for N > 1,
<90, g1 <0.

It is easily verified that the same result holds for the remaining

Lemma 4.3. For g; and §;, i = 0,1,2, as defined in (4.1), the sets {go, g1,
g2} and {Go, g1, g2} are each linearly independent.

Proof. This proof hinges on the linear algebra result that for an
n-dimensional space 4 and a space B where 4 N B = {0}, then (/ — Pg)4 is an
n-dimensional space. Recall the linear polynomials #;, i =0, 1,2, supported
on Ay, and define the 3-dimensional space H = span{hg,h,hy}. Let
H* = PyuyH. Since H n(H — H*) = {0}, then H* = (I — (I — Py,4y))H
is a 3-dimensional space.

Recall the space #” used in the construction of ¢?. Since H* n #" = {0},
then

G = span{go, 91,92} = (I — Py )H*

is a 3-dimensional space. An analogous proof holds for {go,gi,g>}. 1
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LEMMA 4.4. For g; and §;, i =0, 1,2, as defined in (4.1), there exist o; and
G, i=0,1,2, such that

1. span{ao, 1,02} = span{go, g1, g2},

2. span{6y, 61,62} = span{go, g1, g},

3. {60,01,02} and {Gy,61,6,} are biorthogonal sets, and
4. g; 1 gi and&,» 1 gifor = 0, 1,2

Proof. 3 Note that, from Lemmas 4.2 and 4.3, the sets G := span{gy, g1,
g2} and G = span{go, g1, g} are each 3-dimensional, but not biorthogonal.
Define the following biorthogonal bases for G and G-

v2 = go, 2 = go,
b = g1 — <gl,vz> B = 1 — <91,Uz>~
<U2,Uz> <vz,vz>
b = g — {g2,02) oy <92, 0 o and B = g — <gz,vz> 5 <92,Uo> N

vp, D2y vy, Do) <vz,vz> (o0, Boy

Since each #; is easily replaced with its additive inverse, assume without loss
of generality that <{v;, ;> > 0.

Let u; = v; and #; = <M
3 Y
G- Rand T:G - R by

for i = 0, 1,2. Define the transformations 7 :

T(f) = foito) {fstn), {fsw))" and T(f) = (fruod, {fyun), {frua))

so that

T(go) = (0,0, <go, #2))", T(go) = (0,0, <go, u2>)",
T(g1) = (g1, 10,0, <g1, it ))", T(G1) = ({G1,u0>,0, g1, urd)T,
T(92) = ({g2. 60, {92, i1 ), {g2, )" and T(§2) = ({Ga. 0, <G, 1 Y, <G, u2))".

Define wyp e G and a € G by T(wo) = (cos 0,sin 0,0)" and T(&) =
(cos B, sin ,0)7, respectively, so that wg L go for all 0 and @ L gy for all 0.
Then define w; € G and @, € G by

T(w1) = T(wo) x T(g1)

= ({Gr,uz ) sin B, —{G1,ur ) cos 6, — (g1, up» sin )’ and
T(a1) = T(wo) x T(g1)

= (g1, i) sin 0, —{g1, 8y cos 0, —{g1, ity » sin 0)"
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SO thaNt w; L @y, o L gy, @ L wy, and @; L g;. Also, define w; € G and
o eG by
T(w2) = T(ao) x T(g2)

= ({§2 w2 ) sin 0, — (G, u2 cos 0, (G, u1y cos O — {Ga,uo) sin )" and
T(2) = T(wo) x T(g2)

= ({ga, i) sin 0, —{gn, 12y €08 0, {ga, i1y c0s O — {ga, ily» sin 0)"
so that wy L @y, wy L g2, @ L g, and @, L gs. Then w; L @ and @y L
w, provided that there exist 6 and 6 such that {T(w;), T(®;)> =0 and
{T(@1), T(m2)) = 0; that is,
(G, uoY<ga, iy + {Gr, u2y<ga, ) sin 0 sin 6 + (g, u2»<ga, it2» cos 0 cos 0

— {G1,upy<ga ity y sin f cos 0 = 0, (4.3)

(g1, 810 )<{Ga, o) + g1, i1 )<ga, 2 ) sin O'sin 0 + {gi, 12 )<ga, u2» cos 0 cos 0
— g1, dipY<Ga,ury sin O cos § = 0, 4.4)

respectively.

Let K;; = —<g;,§;> >0 for i#j from Lemma 4.2 and let M; = {g;, ;>
and V; = <v;,d;y for i =0,1,2. Note that Ko; = K2 =Ky and Kypp =
Ko = K> due to the rotational invariance of the inner product. Then

_ MyM, — Koy,1 Ko

=My Vi
5 0 0 e
and
~ MoMM> — Ko, 1 Kop(Mo + My + M) — K3 —K;,
] MoM, — Ko 1Kop ’
and so
g1, 00y =1, {g1,ugy = W,
- Koo .
(g i) = — =2, {gr,u2y = —Ko 1,
12)
oo = Kg) + VaKoo CGosts> = K + Ko,
g2’ 0 - I/()I/z ] g27 0 - I/2 )
g2ty =1, {Ga,u1y = 11,
- K -
(gr ity = — —L and {G2,u2) = —Kop.

2
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Then Egs. (4.3) and (4.4) reduce to
—Ko2 V5 sin 0 sin 0+ Kg’l cos 0 cos 0 + VoV; cos 0 sin 6=0 and (4.5)
—Ky,1 V5 sin 0 sin 6+ K&z cos 0 cos 0 + V; V5 sin 6 cos 0 = 0, (4.6)

respectively. 3
Solving (4.5) and (4.6) for 0 in terms of 6 yields the conditions

K2, cosO — VyVssin 0 K2, cos 0
0.1 072 and tanf = 0.2

tan 0 = — —= =,
KoaVasin6 VaKo 1 sin 0 + ViVacos 0

(4.7)

respectively. Combining the two equations in (4.7) yields the single
condition

Ko Volstan? 0 + (K3, — K3, + VoVi?h) tan @ — K3\ 7 = 0,

a quadratic in tainé with real solutions.

Once 0 and 6 are found that satisfy (4.5) and (4.6), find the w; and
@;, i =0,1,2, by the inverse transformations 7-': R* > G and T7': R®
— G defined by

T (co, c1,2) = cou + cruy + coun and

. } } }
T (co,c1,c2) = collp + c1ily + coila.

As a final step, define o; .= w; and 6; = ﬁ fori=0,1,2. 1
This lemma shows that each g; is a linear combination of the two o; where
j#1, and likewise for the §;.

Consider the spaces

Yo == span{og, 61, ¢ ody_;;:i=1,...,N — 1} and
Y, = span{&o,(::l,ngodjv,,-,[ i=1,...,N—1}.

Functions in ¥ will be orthogonal to W; and all translates of q,’~>~", i=
1,...,q — 1 and ¢7 except ¢? o t; o and ¢7 © £ ;. Likewise, functions in Yy will
be orthogonal to Wy and all translates of ¢, i=1,...,9—1,and ¢ except
¢?ot1p and ¢?o1y,. Define Xy = If}g"Vo and X, = PI{‘; Vo to be _two-
dimensional subspaces of Y, and Y, respectively. Let ¥, and ¥, be
biorthogonal bases for the (N — 1)-dimensional complements (/ —P)?;")Yo
and (/ —Pg(;)f’o. The elements of ¥, satisfy all existing orthogonality
conditions necessary to belong to the wavelet space W, and likewise
for ¥,.
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WA
0.

FIG. 5. Domains used in the construction of ¥, and ¥,.

The same construction can be used across the other two edges of 4, using
the spaces

Y1 = span{oa,62°ty, 1,9 odip:i = 1,. -1},
Y1 = span{da, G20 to_1,¢7 o dig:i=1,. -1},
Y, =span{a|,6gt_10, ¢ odp; i = 1,---, -1} and

}72 = span{&l,éoot_ljo,ngod()’,-:i: I,....N—1}

and dnalogous subspaces X, X 1, X, and X, to build biorthogonal pdirs
¥ and ¥, and also ¥, and ¥,. Define VY, =% uv¥ u¥; and ¥ o=
¥, U ¥, U ¥,. The wavelets in ¥, and their translates will be orthogonal to
the wavelets in ‘P and their translates due to the biorthogonality of the g;
and ¢;. Define Wq =S(¥,) = Wy and W, = S(¥,) = W,. The spaces I,
and W each have 3(N — 1) generators.

Let Do,...,D5 be the parallelogram-shaped regions of R’ defined in
Fig. 5. Define

SR and = PO

fori=0,...,5 and consider for the moment v,. Notice that vy meets several
orthogonality conditions required of wavelets in Wp:vg L (f)/' for j=1,.

qgl, vo L (d}/ ot_10) for j=2LL g —1, vy L(§?°10,), and vg is perpen—
dicular to Wf Also, v is perpendicular to generators of W that are built
across the edges (eg,&2), (¢1,62), and (ep,& — &1). Similar results can be
found for the other v; and ¥;. The goal is to alter the v; and ¥; in such a way
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that these orthogonalities are maintained, while achieving the other
necessary orthogonalities.
Define

W(D)

~ w,(D;
== W(D) i + cip? o doo and fi=( — 4(D1)

Wg(Di))‘ji + 6i¢q ° d0,0

fori=0,...,5, where nonzero ¢; and ¢; satisfy (g, q’~>q> =0 and {f;, ¢?> =
0, respectively. From Lemma 4.4, there exist biorthogonal sets X~ = {oy,
01,02} and 2 = {y, 61, 6>} such that span(X) = span{go, g1, ¢>}, span(Z) =
span{go, g1, g2}, and o; L §; and é; L g; for j=0,1,2. Then

Lo = vo — {Vo, G202 — Vo, 61 °t_10)01 °t_10+ cod? o dop

= co? o do + <90, 6101 + {92, 60 )60 + — Z(N Ne?ody; and

(4.8)
fii =91 — B1,01061 — {B1,01 0ty 161 oty 1 + E1¢7 o dog
i ) e N
= C1¢7 o doo + {go, 02)62 + {go, 02762 fo,_1 + NZ(N — )" > djp.
=1
’ (4.9)

Notice that the y; an~d [i; maintain the o~rthogonalities of the v; and ¥;. Also,
by definition, u; L ¢, f; L ¢?, p; L W, and & L W,. Finally, note from
(4.8) and (4.9)

Qg o ti—1, firy = {92, 60 )<do, 62){F0,G2)> = 0 and
{po» fl1 ) = o1 + <go, 61)<go, 02)<01,62) = co€1 #0.

Also, it is trivially established that (ugeot1o) L g and (uye 1) L .
Similarly, it is established that the p; and f; satisfy the condition y; L
(fjotmpn) for myn#0, i,j=0,...,5, i#/, and that the sets {;;} and {fi}
satisfy Lemma 1.1. Let ¥, and Ef’h be biorthogonal bases for span{y, :i =
., 5} and span{f;:i =0,...,5}, respectively. Define W}, := S(¥)) = W
and Wh = S(lPh) e W()
Before establishing that all the wavelets necessary to “build” ¥; and ¥V,
have been found, a lemma is needed.

LEMMA 4.§. For g; apd gi» 1=0,1,2, as defined in (4.1), g; € Vo + W, +
Wy and §; € Vo + W, + Wy, for i =0,1,2.

Proof By Lemma 4.4, it suffices to show that o; € 1y + W, + W, and
GieVo+ W+ W, for i=0,1,2. Recall the space Yy is spanned b}/

o1, Gpot_1p, and the functions ¢? o dy;, i =1,. — 1, and, 11kew1se Y
o0 1s spanned by 67, Goot_ 1.0, and the functlons d)q do,, i=1,. — 1.
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Recall that Xj is the span of Py, quq and Py O((bq o t,1) and likewise, X is the
span ofPY0 qﬁq and PY“ (qﬁq ° f, 1) By deﬁnmon g1 €Yyand (I — XO)YO < W,
It sufﬁces to show that Xo < Vo + W,

It is tediously verified that

co(@ — py — sy — p3 — g — ps) — (L —c1 — 2 — 3 — ca — ¢s5) Uy

N-1
N L co .
= ¢9<90, 61701 + co<g2, 60760 ° 10 + = Z (N —i)¢? o dy,
N =
+ (c1 + 2+ c3+cs+ 5 — 1)<go, 61 )01
+ (c1 +er+catca+ce5s —1){ga, Go)do o t_1p

ci+ertestes+os— 1\ = N g
+( ¥ );(N—z)d) o,

= (co+ci+cr+c3+cs+cs— D[<go, G101

L L= v
+<92. 60200 110+ 5 >N =i do,i]

i=1

=(co+tci+eo+te3+teq+ces— 1)P)};O¢q.
Likewise,

(=g =y — o — g — ps) — (1 —co —c1 —c2 —ca — sz o to
= (cotcrt+ertestes+es— DP(? o to1).

Thus, Xy < V) + W, and 0, € Vo + W, + W,. Analogous arguments establish
O'o,O'zGVE)—‘rW+VVhandO',€V()+Wq+Wh |

THEOREM 4.6.  Let (V) and(V,,) be biorthogonal MRA of multiplicity r in
R? constructed from Theorem 2.1. Deﬁne Wr, I/Vf, Wy, Wy, Wi, and W, as
above. Then V1 = Vo + Wy and Vi = Vo+ Wy where Wy = Wi+ Wy + W,

W, = W} + Wg + Wy, and Wy and W each have g(N? — 1) generators.

Proof. Define W =Wy + Wy + Wi, W= Wy + Wy + W), V = V(4o),
and V =V (4y). Certainly, V} 2 Vy+ W by nature of the wavelet
constructions. At issue is whether V] < 7y + W.

For N > 2, generators ¢’ o doo, i=1,...,9 — 1 of V] can be found in the
space V. Notice that

&szwkﬂﬁl%ﬁla
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where ¢ = q ! The scaling functions and the definitions of W, /4 r» Wy and
W ,, along w1th Lemma 4.5, provide biorthogonal bases

(', ¢ U¥r U {og, 01,005 and  {@,...,¢"t U P, U {6, 61,62}
of ¥ and V, each with cardinality

N -DWN-2)

s, (V- DV -2)
! |

t+(tN2—|— t—3)+3:tN+ 5
Since the linear systems have full rank, each f € V' is a linear combination of
elements of Vg + W and each f € V' is a linear combination of elements of
Vo+ W. Thus, ¢'odogeVo+ W and ¢'odygeVo+ W for i=1,...,
q— 1.

Also notice that

5 5
(f’q—z M = <1 —Z Ci>¢q°d0,0-
=0

i=0

"l:hus, ic W+ Wr+ Wy + W, and W = W,. The analogous results hold for
W . The number of generators is the sum of the generators for Wy, W, and
W,:

(N> —1)=3N=3)+ BN -1)+6=g(N>—1). &

COROLLARY 4.7. Let (V) and (17,,) be biorthogonal MRA of multiplicity
q in R? constructed from Theorem 2.1. Define Wy, VT&, W,, and W as above.
Lel D be the hexagonal support of ¢?, and let X = (Vo + Wy + W)(D) and

= (Vo + W/ + W)(D) Then W, and W, are generated by biorthogonal
bases for PEVi(D) and PLV (D).

While the definitions of W, and W, provide an explicit construction,
Corollary 4.7 says that after finding the generators of Wy, W,, W, and W,
the generators of W, are whatever is left in 7} with the support of ¢?, and
likewise for W,

5. WAVELETS FOR SCALING FUNCTIONS IN SECTION 3

By Theorem 4.6, W, and W will each have 3(32 — 1) = 24 generators. Let
Dy be the overlap domain with vertices at (0,0), ¢, £, and & — & and let D;
be clockwise rotation of Dy about the origin by §i fori=1,...,5 asin
Fig. 5.
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4

FIG. 6. Wavelets ' through y®.

5.1. Wavelets in Wy and W

By definition, W, and W} each have 12 generators, 6 supported on 4, and
6 supported on Vj. Define the 10-dimensional spaces V = Vj(4y) and
V = V1(4y), and the 4-dimensional spaces

X = Pl(span{¢', ¢, ¢> o t19,¢> o 10,})  and
X = Pj(span{d', ¢, ¢’ = 110, ¢ o t0.1}).

The ', i=1,...,6, illustrated in Fig. 6, were chosen as a spanning set for
- PX W that met some symmetry conditions. The associated y/, illustrated

in Fig. 7, were chosen so that zp’ e ker(span{y/ : j#i} U X) and (Y’ ,l// >0

fori=1,...,6. Each of the above is “normalized” by the factor \/ <y, lﬂi>.
These wavelets reflected onto Vg will span Wy|yg, and Wf|XV0- Define

l//iJr6 — l//i oro t—l,O and l//er6 l//l opot 10
fori=1,...,6.

5.2. Wavelets in Wy and W

By definition, W, and W each have 6 generators. Following the
construction in the proof of Lemma 4.4, biorthogonal sets {gy, 01,02} and
{69,61,62} can be found such that ¢; | §; and 6; L g;, i =0,1,2. Then,
following the construction in Section 3, functions in W, with support on
the parallelogram (gg,&;1,&,6 —¢;) will be linear combinations of
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FIG. 7. Wavelets l/;l through 1/76.

a1, Goot_1p, ¢3 ody;, and ¢3 odp,. These functions are orthogonal to all
translates of (,bl, ¢)2, and y' for i=1,...,12. Also, on_q53ot1,o and
Gooto1p L ¢3 o t_y,1. Only four other orthogonality conditions must be met.

It is possible to construct symmetric-antisymmetric pairs of wavelets.
Define

vi =01+ 6ot 19+c1¢ o dos + 20’ < oy,
and solve the system of equations

{@h&>=m
P otgy =0

for ¢; and c¢,. Likewise, define
V=614 6ot 10+ a1 odoy + &7 o dya,
and solve the system of equations

{@h&>:a
G, otg> =0
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for ¢; and &. If {v{,¥;><0, then change ¥; to its additive inverse. Also,
define v, and ¥, by

V) = 0] —Ov'()ot_ly() and V) = G —5'001_],().

Then v; 1 ¥, and ¥; L v, by nature of their symmetry properties.
The remaining wavelets generating W, are merely 2n/3 rotations of v; and
y, about ¢y, denoted as 7. Define

(03]} =V, @ :Til,

o' =y, &' =,

o =y o1, & =9 o1,
o' =)o, ' =7;01,
o' =y oToq, 7 =9 0707,
o =vy0707 and 8 = 9y0701.

Normalize by defining y' == '/+/{/, &) and x/;f = ' /\/{@',&") for i =
13,...,18. Wavelets ', ! ¢3, and ' are illustrated in
Fig. 8.

5.3. Wavelets in Wy, and W,

By definition, W), has 6 generators. Following the construction in Section
3, construct y; and f;, i =0,...,5 that span W, and W, respectively. It can
be verified that ¢g = ¢y =c4, c; =3 =5, Co = ¢ = &4, and ¢ = ¢3 = C5
due to the rotational invariance of both the g; and g;. To construct
biorthogonal sets with some symmetric properties, first define the
following:

5 5
Y1 = Z His ‘}71 = Z ﬁi’
i=0 i=0
po=Y D = (Vi
i=0 i=0
V3 = Ho — Mo, 73 = flo — fo.
V4 =My~ M, Ja = 1 — 3,
Vs = Mo T to, Vs = fo + fia,
Ve = M + s, Yo = + 13
Then construct the biorthogonal sets {w1,...,w¢} and {@y,...,ds} using

the biorthogonal Gram—Schmidt process so that {w;, ;> >0, i=1,...,6.
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FIG. 9. Wavelets y'? through .
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FIG. 10. Wavelets l/;lg through l/;24.

efine Y18 = 2 and Y8 = —%__ fori=1,...,6. These wave-
@0y {w;o;)

lets are illustrated in Figs. 9 and 10, respectively. The sets S({y':i =

1,

...,24)) and S({y':i=1,...,24}) form biorthogonal bases for W, and

W.

(SO
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